
Preprint
UCRL-JC-150544

U.S.

Component Technology
for Laser Plasma

Department of Energy June 17,2002

Simulation

W.J. Bod, S.G. Smith, T. Dahlgren, T. Epperley, S. Kohn,
G. Kumfert

This article was submitted to International Symposium on
Computing in Object-Oriented Parallel Environments, Seattle, WA,
November 3-5, 2002

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall
not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited or
reproduced without the permission of the author.

This report has been reproduced directly from the best available copy.

Available electronically at httu: / /www .doc.gov/bridge

Available for a processing fee to US. Department of Energy
And its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reuorts@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.gov
Online ordering: httu: / /www.ntis.g;ov/orderin_p.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http: / /www .llnl.gov/ tid / Library.htm1

Component Technology for Laser Plasma Simulation
William J. Bosl

bosl@llnl.gov

Thomas Epperley
epperley@llnl.gov

Steven G. Smith
sgsmith@llnl.gov

Scott Kohn
kohnl @Ilnl.gov

Tamara Dahlgren
dahlgrenl @Ilnl.gov

Gary Kumfert
kumfert@llnl.gov

Lawrence Livermore National Lab

Livermore, CA 94551
P.O. BOX 808, L-561

ABSTRACT
This paper will discuss the application of high performance
component software technology developed for a complex physics
simulation development effort. The primary tool used to build
software components is called Babel and is used to create
language-independent libraries for high performance computers.
Components were constructed from legacy code and wrapped
with a thin Python layer to enable run-time scripting. Low-level
components in Fortran, C++, and Python were composed directly
as Babel components and invoked interactively from a parallel
Python script.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability - distributed
objects, interface definition languages.

General Terms
Algorithms, Performance, Languages

Keywords
Components, scientific computing, numerical methods, physics.

1. INTRODUCTION
The scientific computing community has invested a significant
amount of resources towards the development of high-
performance scientific simulation software, including numerical
libraries, visualization, steering, software frameworks, and physics
packages. Unfortunately, because this software was not designed
for interoperability and re-use, it is often difficult to share these
sophisticated software packages among applications due to
differences in implementation language, programming style, or
calling interfaces. It is highly desirable to be able to reuse large
and complicated software packages without having to devote large
amounts of time to re-engineer them [I]. Moreover, many of the
simulations that are required today involve multiple physical and
chemical processes, so-called multiphysics simulations. Building
these codes from pre-tested software components is much more
reliable and efficient than trying to build a complete simulator
from scratch [2].

One example of a complicated multiphysics simulation problem is
the interaction of lasers with plasmas. Simulation of laser plasma
interaction is an important design tool, complementing theoretical
analysis and experimentation for developing complicated laser

tools for studying inertial confinement fusion. The software
required for simulating these complex physical processes reflects
the physical system: it is complex. To carry out numerical
experiments and analyze the resulting computational data, the
software must be flexible enough to allow scientists to quickly
and easily compare competing physics models and alternative
design strategies. Constructing complex simulation codes from
available software components is an efficient strategy for building
a new laser plasma simulation code.

In this paper, will present our experiences wrapping a large
scientific simulation code using the Babel language
interoperability tool [8] so that the application could be driven
from the Python scripting language. Furthermore, we were able to
freely mix C++, Fortran, and Python modules in the software. For
example, from the scripting layer, we were able to call the
application code in C++, which in turn called a numerical routine
written in Fortran, which in turn called a bounary condition
routine written in Python. This language interoperability enabled
us to rapidly prototype new boundary conditions modules in
Python without recompiling or linking the whole code. We
discovered that compiler incompatibilities introduced some
difficulties in code reuse. This problem is ubiquitous and is not
limited to the Babel tool. We will discuss the trade-offs using a
tool such as Babel as compared to a more traditional wriapping
solution such as SWIG.

2. ALPS: Adaptive Laser Plasma Simulator
The ability to predict and control laser-plasma interactions is
critical for the design of inertial confinement fusion (ICF)
experiments. ICF involves the use of high powered lasers to
rapidly ionize and compress hydrogen fuel pellets sufficiently to
initiate a fusion reaction. During these experiments, a plasma
filled region is created by the ionizing fuel. The laser must
continue to propagate through the plasma region to achieve the
desired distribution of energy at the target fuel pellet. Simulation
of the laser plasma interactions is used to predict and control laser
parameters for ICF experiments.
The Adaptive Laser Plasma Simulator (ALPS) project [3] is being
developed using the SAMRAI (Structured Adaptive Mesh
Refinement Applications Infrastructure) [4,5] system currently
under development in CASC. SAMRAI is a C+!- class library that
supports the development of application codes utilizing structured
adaptive mesh refinement (AMR) algorithms. Parallelism on
distributed memory architectures is handled by the framework,

freeing the user from most of these details. Data layout and
interprocess communication is performed through an interface to
the standard Message Passing Interface (MPI) library.

3. Component Software Technology
Component technology is an extension of scripting and object-
oriented software development techniques that specifically
focuses on the needs of software re-use and interoperability.
Component-based software techniques address issues of language
independence and component connection behavior that other
software techniques do not address. To use a hardware analogy, a
component is like a "software integrated circuit" with well-defined
pin-outs that may be connected to compatible pins on other
"software integrated circuits." Figure 1 is a cartoon illustration of
how we used Babel as the backplane to connect software
components together to create an application.

3.1 Commercial solutions
Component approaches based on CORBA [9], COM [12], and
Java technologies are widely used in industry but will not scale to
support large parallel applications in science and engineering.
Our research focuses on the unique requirements of scientific
computing on high-performance machines, such as fast in-process
connections among components, language interoperability for
scientific languages, and data distribution support for massively
parallel SPMD components.

3.2 Babel
Babel is a language interoperability tool that uses a Scientific
Interface Definition Language (SIDL) to describe component
interfaces. Using SIDL descriptions, Babel automatically
generates code to mediate differences between components
written in different languages.

Computational scientists developing large simulation codes often
face difficulties due to language incompatibilities among various
software libraries. Scientific software libraries are written in a
variety of programming languages, including Foman, C, C++, or
a scripting language such as Python. Language differences often
force software developers to generate mediating glue code by
hand. In the worst case, computational scientists may need to re-
write a particular library from scratch or not use it at all. We have
developed a tool called Babel that addresses language
interoperability and re-use for high-performance parallel scientific
software. Its purpose is to enable the creation, description, and
distribution of language independent software libraries.
Babel addresses the language interoperability problem using
Interface Definition Language (IDL) techniques. An IDL
describes the calling interface (but not the implementation) of a
particular software library. IDL tools such as Babel use this
interface description to generate glue code that allows a software
library implemented in one supported language to be called from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference '00, Month 1-2,2000, City, State.
Copyright 2000 ACM 1-581 13-000-O/OO/OOOO.. .$5.00.

any other supported language. We have designed a Scientific
Interface Definition Language (SIDL) that addresses the unique
needs of parallel scientific computing. SIDL supports complex
numbers and dynamic multi-dimensional arrays as well as parallel
communication directives that are required for parallel distributed
components. SIDL also provides other common features that are
generally useful for software engineering, such as enumerated
types, symbol versioning, name space management, and an object-
oriented inheritance model similar to Java.
The Babel parser, which is available either at the command-line or
through the Alexandria web interface, reads SIDL interface
specifications and generates an intermediate XML representation.
XML is a useful intermediate language since it is amenable to
manipulation by tools such as a repository or a problem solving
environment. XML interface descriptions are stored either in a
local file repository or on the web using Alexandria. The vision is
that a scientist downloading a particular software library from the
component repository will receive not only that library but also
the required language bindings generated automatically by the
Babel tools.
The Babel code generator reads SIDL XML descriptions and
automatically generates glue code for the specified software
library. This glue code mediates differences among calling
languages and supports efficient inter-language calls within the
same memory address space and, eventually, across memory
spaces for distributed objects. The code generators create four
different types of files: stubs, skeletons, Babel internal
representation, and implementation prototypes. The Babel internal
object representation created by the code generators is similar to
that used by COM, CORBA's Portable Object Adaptor, and
scientific libraries such as PETSc. The internal object
representation is essentially a table of function pointers, one for
each method in an object's interface, along with other information
such as internal object state data, parent classes and interfaces,
and Babel data structures. Stub and skeleton code translates
between the calling conventions of a particular language and the
internal Babel representation. The code generators also create
implementation files that contain function prototypes to be filled
in by the library developers. To simplify the task of library
writers, we have added automatic Makefile generation as well as a
code splicing capability that preserves old edits during the
regeneration of implementation files after modifications to the
SIDL source. Finally, the run-time library provides general
services such as reference counting and dynamic type
identification. In the future, we expect to support dynamic loading
of objects, reflection, and a dynamic invocation interface.

4. PyALPS
Currently, our laser plasma simulations are carried out using a
uniform rectangular grid. This prohibits the use of high resolution
in the regions of greatest interest by requiring a uniform grid over
the entire domain. However, the code currently used for laser-
plasma simulation is highly developed as a scientific and
engineering design tool. In particular, an in-house scripting
language called Yorick [l 13 is used for interactive steering and
control of laser calculations. Yorick is an interpreted
programming language, designed for postprocessing or steering
large scientific simulation codes. Smaller scientific simulations or
calculations can be written as standalone yorick programs. The
language features a compact syntax for many common array

operations, so it processes large arrays of numbers very
efficiently.

4.1 Scripting
For use as a scientific and engineering design tool, ALPS requires
the run-time flexibility of a scripting language, such as the Yorick
capability that current laser physicists are accustomed to having.
We adopted Python as a scripting language because it has a large
and growing scientific user base and has a parallel
implementation.

Since detailed simulations of laser plasma interactions can
consume many hours of supercomputer time, it is often desirable
to do calculations with either limited spatial resolution or a small
number of time steps, then look at the results and determine
whether some adjustment of the parameters is needed before
continuing on with a lengthy calculation. Similarly, short period
simulations may be used to examine the effects of parameter
variations. Scripting enables laser scientists to perform
simulations in a controlled fashion to maximize the amount of
information that can be obtained in a limited time [8]. It also
allows a great deal of flexibility by allowing different or new
physics modules to be invoked quickly and easily. Scripted codes
can be run interactively or in batch mode, giving the user
considerable flexibility over a simulation.

We have used Babel to develop a scripted version of ALPS that
uses Python as the scripting language. Wrapping parts of the
ALPS code using Babel enables the creation of plug-n-play
modules in a variety of supported languages. From the highest
level at which users interact with pyAlps, the ALPS application
appears to be a Python package, consisting of pure Python
modules. that enables application users to compare ALPS results
against those produced by an existing computational tool. The
scripted interface will also allow ALPS users to interact with a
running simulation to visualize data on-the-fly. This collaboration
is the first to demonstrate Babel's applicability in a large-scale
scientific application.

One of the primary goals of creating a scripted version of ALPS
was to enable users to run ALPS interactively. Babel was used to
create thin Python wrappers for important capabilities in the
ALPS code. Specifically, we wrote interface files with Babel's
Scientific Interface Definition Language (SIDL), which is similar
to the IDL interface used to write CORBA interfaces. The SIDL
file is a language-independent, object oriented description of the
attributes (member variables) and methods associated with
interfaces and classes. Babel uses the information in the SIDL file
to create language bindings for any of the supported languages.
An example of a SIDL file is shown here. It contains class
definitions for the basic Alps class and for beam modules, which
compute the energy intensity contained in a laser beam. The SIDL
file is used by the babel software to generate client-side and
server-side code, each in a specified language. For the Alps class,
the client is written in Python and all relevant files are presented
to the user as the pyAlps package. Once imported as a Python
package, an Alps class is created and methods can be invoked.
After initialization from an input file or restart data file, the user
may invoke several different run options in order to control time
stepping precisely. Visualization files can be written at any point
after the simulation has run to the currently-specified time and
viewed using visualization software. Parameters can be adjusted

using Python-wrapped database manipulation methods for the
input variables.
The following code is an example of a SIDL file for the pyALPS
package. Babel uses the information in this file to create glue code
in any of the supported languages to wrap each of the specified
objects.

version pyAlps 0.1;
package pyAlps {

class Alps {
void initialize(in pySAMRAI.InputDatabase database);
void initializeFromRestart(in string dir, in int num, in

double run(in double time);
double runToFinish0;
double runTo(in double time);
double step(in int nun-iter);
double stepTo(in int iteration);
void writeRestart(in string fname, in int seq-nun-ext);
void writeVis(in string fname, in int seq-nun);
void finalize0;

pySAhfRA1.InputDatabase database);

1
abstract class Beam {

abstract void setBeamO(inout array<dcomplex,2> amp);
final void setDopplerShift(in double a-doppler-shift);
final double getDopplerShift0;
final void setCenter(in array<double,l> a-center);
final void getCenter(out array<double,l ? a-center);
final void setMaxIntensity(in double a-intensity);
final void getMaxIntensity(0ut double a-intensity);

1
class C o s 2 B e a m extends Beam {

class SphericalCos2-Beam extends Beam {

class Gaussian-Beam extends Beam {

class SuperGaussianBeam extends Beam {

void setBeamO(inout array<dcomplex,2> amp); }

void setBeamO(inout array<dcomplex,2> amp); }

void setBeamO(inout array<dcomplex,2> amp); }

void setBeamO(inout array<dcomplex,2> amp); }
1

In particular, note that the beam class is declared to be an abstract
class. This means that at least of the member functions of the
beam class is abstract and is not defined within the beam class.
Subclasses of the general beam class must define a setBeamO
method. The abstract beam class also declares a number of
member functions that will be explicitly defined in the
implementation of the beam class. These member functions are
common to all subclasses of the beam module, although they may
be substituted with new functions in subclasses. Babel can create
Beam modules in any of the supported languages, currently
including F77, Python, C, and C + + from the SIDL file.
Our initial task was to decompose the ALPS code into
components that were appropriate for run-time scripting. The
primary tasks performed in the monolithic code were to read and
process input data, initialize data structures, loop through a
specified time loop, and output data at regular intervals in the time
loop. These code segments formed the basic components that
were to be controlled from the script.

The ALPS code simulates the interaction of a set of laser beams
with a plasma in space and time. The computational grid is a
sophisticated adaptive, multilevel grid that is required for high
resolution. Often, run-time parameters for the complex simulation
runs are not know precisely. Scientists needed a simulation tool
that could be run a certain number of time steps, stopped and
queried using visualization tools to inspect intermediate field
variables, then modified by changing certain key parameters and
run forward in time for a fixed interval again. This gave the
scientists a steering capability through Python scripting.
A parallel version of Python, pyMPI, developed at LLNL and
available publically through SourceForge [121 was adopted for
Python scripting. ALPS is built using the SAMRAI framework for
adaptive mesh simulations on parallel machines, together with
legacy Fortran code obtained from laser physicists. Linear solvers
from the PETSc library and HYPRE are available through the
SAMRAI framework and invoked for solving linear systems.
Babel was able to generate code to glue together all these
packages in appropriate components. Of particular note was the
decomposition of SAMRAI into components for data I/O and
mesh initialization. From the scientist's view, pyALPS looks like
a normal python script. An example of a pyALPS script is shown
here:
import sys
import pySAMRAI.InputDatabase
import pySAhlRAI.Alps

Create the input database
inputdb = pySAMRAI.InputDatabase.InputDatabase0
inputdb.initialize(" ALPS")
inputdb.parseInputFile("a1ps.input")

Create alps object and initialize the state
alps = pySAMRAI.Alps.Alps0
alps.initialize(inputdb)

Change some values
griddingdb = inputdb.getDatabase("GriddingA1gonthm")
print("0ld efficiency-tolerance = Yof' Yo
griddingdb.getDouble("efficiency-tolerance"))
print("0ld combine-efficiency = %f' O/o

gnddingdb.getDouble("combine-efficienc y"))
gnddingdb.putDouble("efficiency-tolerance", 0.90)
griddingdb.putDouble("combine-efficiency ", 0.90)
print("New efficiency-tolerance = %f' Yo
gnddingdb.getDouble("efficiency-tolerance"))
print("New combine-efficiency = '/of' Yo
gnddingdb.getDouble("combine-efficiency"))

Step 5 time steps . . .
alps.Step(5)
. . . then do something with the data!
Run to the end specified in the input file
alps.runToFinish0
Finalize everythtng
alps.fmalize0

One of the primary difficulties encountered in this project was
related to the need to create dynamic libraries for run-time
loading. Incompatible compiler options seemed to cause the most
build problems. During the integration process the low level
details of simply building the code caused an unexpected number
problems. Several of the packages we were integrating had not
been compiled as a shared library before. This mandated a
reworking of the build systems in order to support the necessary
compilation steps. While this was expected, the brittleness of the
build process was not. We found that even slight variations in the
compiler options used to compile each package could cause link
or runtime failures.
The runtime failures in particular are troublesome since a method
invocation would fail in a system library for no obvious reason.
To overcome this we standardized on a set of compilers and
compile flags for all packages. While this is a simple (and
obvious) solution, it is not a satisfactory solution if the goal is to
have a large set of easy to use components for widespread use.
Given the target audience for a scientific component architecture
contains developers for whom dynamic linking will be a new
experience, these types of problems could pose a barrier for
software reuse, especially for software in object or component
form. The component software community may need to move
towards some kind of compiler meta-data for packages or
something else to facilitate mixing of binary libraries, especially
with C++.
Creating SIDL files needed to w a p each of the components is is a
little tedious, but is relatively straight-forward. We did not find
this to be a particularly difficult issue.

4.2 Plug and Play Modularity
In addition interactive control of simulations, the capability of
easily swapping in alternative physics modules is a desirable new
feature for laser plasma simulations. Scientific investigation using
simulation often involves testing and comparing alternative
physics modules or new algorithms. Our goal was to enable rapid
replacement of classes, subroutines, or groups of related classes
and subroutines with alternatives.
To do this, appropriate pieces of code were wrapped using Babel
and made into Babel components. These components can be
accessed by driver routines written in any of the Babel supported
languages. Alternative components can then be written by
application scientists in any language that's convenient and
wrapped with Babel to make an alternative component that can be
seamlessly interchanged with the original component. Because the
application scientist is free to implement new components in a
language such as Python, new algorithms can be written quickly
and tested in the pyALPS code. Important components can be
optimized in another programming language later if desired.
One of the novel and powerful capabilities provided by Babel
components is the ability to call any of the supported languages
from any other. Thus, not only can Python call C or Fortran
subroutines as, for example, SWIG extensions to Python, but
Fortran can also call Python functions. We used this feature to
create a powerful plug and play capability for scientific
exploration of new beam modules.

4.2.1 Beam Modules
In the ALPS code, beam calculations are invoked from within the
legacy Alps code. The original beam subroutines are written in

Fortran and are called from Fortran subroutines, which are
originally invoked from the Alps C t t driver code. Using the
SIDL file shown above for the Beam class, we made Beams a
component of the system and modified the ALPS driver to call
Beam components rather than the original embedded Fortran
subroutines. Beam modules clients were created in Fortran using
Babel to enable us to use the original Fortran beam calculations.
Once this was done, we also created Python beam clients to
demonstrate this capability. The advantage of Python beam
modules is that they can be created quickly and do not need to be
compiled to be invoked by the pyAlps simulator. This provides a
versatile tool for scientific experimentation.

77
/ >

Figure 1. Physics components can be written in any of the
languages supported by Babel. Components written in Python,
for example, can be invoked without recompiling to rapidly
test new algorithms.

4.2.2 Lessons Learned
Creating new modules was not as difficult as building the
components created from legacy code and linking them together.
This is due largely to the fact that new beam modules are designed
and written specifically for the component system. Python
modules are particularly easy to write and invoke from the Python
script. Perhaps the only difficulty in adopting this approach was
learning to use Babel arrays within Fortran in order to pass them
to the component layer on the client side. Arrays must be passed
back and forth to client and server in a language independent
fashion and this is accomplished by requiring the creation of
Babel arrays in all user code.

5. Discussion
Several different approaches are available today to build language
independent components that can be re-used in multiple

applications, used to assemble complex multi-physics simulators
from pre-built software, and run simulation codes from a scripting
language such as Python. Babel is a tool that offers certain unique
features if those features are required, including a powerful array
syntax, support for complex numbers, and parallel computing.
The price for this capability is a need for careful attention to
compiler options for all codes that must interoperate and the need
to learn Babel data structures and the Babel scientific interface
definition language. If Babel’s unique features are required, then
this is a price that has to be paid, for there are few other options at
this time that provide all these features.

6. ACKNOWLEDGMENTS
Funding for this project is provided by the LLNL Laboratory
Directed Research and Development program and the DOE Office
of Science.

7. REFERENCES
Rob Armstrong, Dennis Gannon, A1 Geist, Katarzyna
Keahey, Scott Kohn, Lois Mcinnes, Steve Parker, and
Brent Smolinski, “Toward a Common Component
Architecture for High Performance Scientific
Computing,” High Performance Distributed
Computing Conference, 1999.
A. Cleary, S. Kohn, S. Smith, B. Smolinski, “Language
Interoperability Mechanisms for High-Performance
Scientific Applications,” Proceedings of the SIAM
Workshop on Object-Oriented Methods for Inter-
Operable ScientiJic and Engineering Computing,
Yorktown Heights, NY, October 21-23, 1998.
M. Dorr and X. Garaizar, The ALPS Home Page,
ht@://m.llnl.g.ov/CASC/altx.
R. Homung and S. Kohn, “The Use of Object-Oriented
Design Patterns in the SAMRAI Structured AMR
Framework,” Proceedings of the SIAM Workshop on
Object-Oriented Methods for Inter-Operable Scientific
and Engineering Computing, October 1998. See
httu ://m. llnl . aov/CASC/S AMRAI .
R. Homung and S. Kohn, “Managing Application
Complexity in the SAMRAI Object-Oriented
Framework,” Concurrency and Computation: Practice
and Experience (special issue on Software Architecture
for Scientific Applications), 2001.
S. Kohn, G. Kumfert, J. Painter, and C. Ribbens.
“Divorcing Language Dependencies from a Scientific
Software Library,” Proceedings of the SIAM
Conference on Parallel Processing for Scientific
Computing, 2001.
J. Ousterhout, Scripting: Higher Level Programming
for the 21” Century, IEEE Computer, March 1998.
CORBA Components, Object Management Group,
OMG TC Document orbod99-02-95, March 1999.
See http://www.omg.org

[9] B. Smolinsh, S. Kohn, N. Elliott, andN. Dykman,
“Language Interoperability for High-Performance

[I I] The Yorick Home Page, 2001. See ftp://ftp-
ic f. llnl . novipub/Y orickhorick-ad. html .

Parallel Scientific Components,” International
Symposium on Object-Oriented Parallel Environments

[121 http:liwww.microsoft.codcoddefault.asp.

(ISOPE), December 1999.
[IO] See http:/isourceforne.net/proiects/pympi.

